

NEW STRUCTURE FOR DC-60 GHz THERMAL POWER SENSOR

Setsuo Kodato, Takashi Wakabayashi,
Qingde Zhuang and Seiji Uchida

ANRITSU CORPORATION
1800 Onna, Atsugi-shi, Kanagawa-ken 243 JAPAN

ABSTRACT

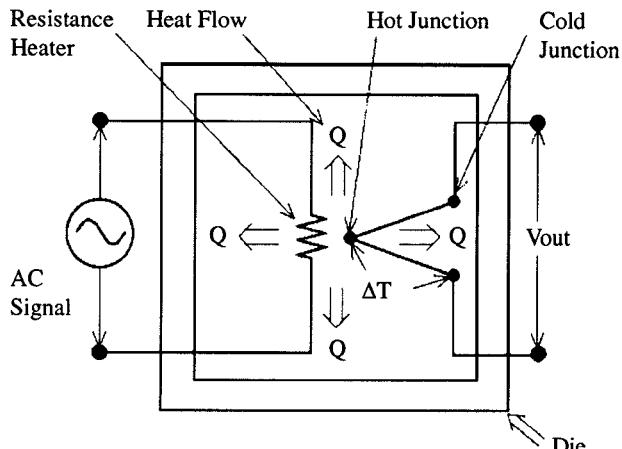
We have developed a new structure thermopile-type thermal power sensor for the millimeter wave range (dc to 60 GHz). It consists of a ceramic substrate, metal and microcrystalline-SiGe thin films. Both fast or high-sensitivity sensors can be manufactured.

INTRODUCTION

Use of microwaves, especially at frequencies greater than 30 GHz (millimeter wavelengths) is attracting interest. R&D in this frequency region is brisk, in anticipation of collision avoidance systems for vehicles, use in local area networks (LAN), etc. To use millimeter waves, a high-performance sensor that can measure power accurately, quickly and at high-sensitivity is needed. The thermal power sensor has the advantage of measuring power most accurately, independent of signal waveforms¹⁾.

Conventional thermal power sensors use a waveguide-type sensor composed of a Bi-Sb thermopile²⁾. Therefore, the power measurement system requires an inconvenience coaxial-waveguide transformer to detect millimeter wave power with coaxial cable. Moreover, the power sensor has some disadvantages: the response time is slow and the burnout power level is low,

requiring an attenuator when detecting high power.

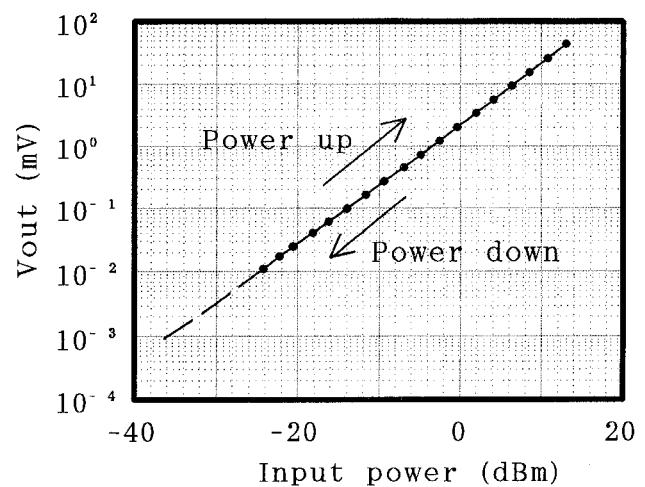

The object of this research was to design and develop a new thermopile-type thermal power sensor to overcome the above disadvantages. The main development targets were quick response, high-sensitivity, ultra-wide frequency range and high burnout level.

DESIGN CONSIDERATION AND DEVICE FABRICATION

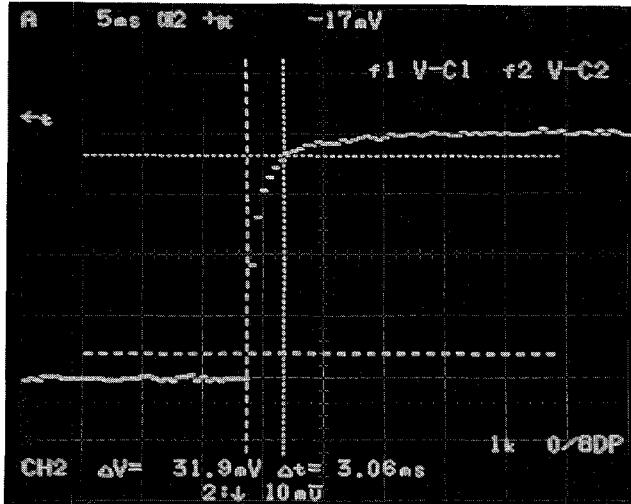
Thermal principles have long proved suitable for precise measurement of the root-mean-square (rms) value of ac signals, based directly on the definition of the rms value. The power converted by a resistance heater is used as a measure of the rms value of the applied signal¹⁾. As seen in Fig. 1, in a thermal rms-dc-converter, this power (Q) flows as thermal energy via a path with a well-defined thermal resistance to a heat sink, causing a temperature gradient (ΔT) along the heat flow path. This gradient is converted by temperature sensor to an electrical output signal (V_{out}).

To design a thermal power sensor with a thermopile temperature sensor, a self-heating or

WE
3F


Fig. 1 Schematic diagram of thermal rms-dc-converter

indirectly-heated type can be used. The self-heating type consists of a thermocouple which is also composed of a resistance heater. Therefore, the conversion of electrical power to thermal energy is high and quick. However, the leg resistance of the thermocouple is restricted to $100\ \Omega$. On the other hand, the indirectly-heated type consists of a separate thermocouple and resistance heater. Therefore, the conversion efficiency and response time are inferior to the self-heating type. However, only the heater resistance is restricted to $50\ \Omega$. Therefore, the resistance heater figure pattern design can be flexible bringing well-matched impedance with wide frequency range. Because of this input/output resistance flexibility, the indirectly-heated type was chosen for the new thermopile power sensor.


Fast and high-sensitivity thermal power sensors were designed and developed. A sapphire substrate with a high thermal conductivity is used for the fast sensor. A glass substrate with low thermal conductivity is used for the high-sensitivity sensor. The thermopile of each sensor is made of platinum and microcrystalline-SiGe films with a large Seebeck coefficient³. The chip size is $1 \times 1\text{ mm}^2$.

RESULTS

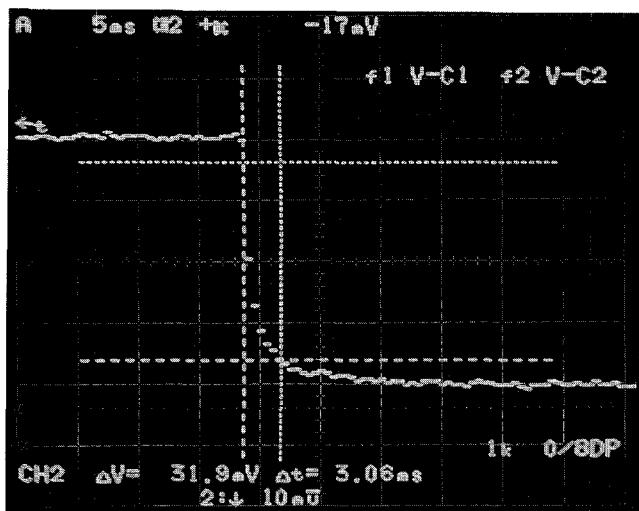
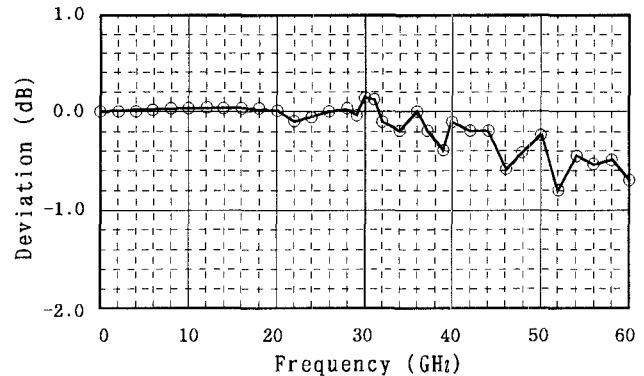

The power sensor chip was mounted on a co-planar alumina substrate module and the electrical characteristics were measured. Figure 2 shows the input-output characteristics of the high-sensitivity thermal power sensor. The sensitivity is 2.1 mV/mW . This value is ten or more times better than conventional sensors⁴. This sensor permits measurement of -40 dBm power levels when used with a newly-developed power meter. The fast sensor has a sensitivity of 0.25 mV/mW . Figure 3 shows the response characteristics of the fast sensor. The rise (10%-90%) and fall (90%-10%) are both 3.06 ms . The values are 41 ms and 39 ms for the high-sensitivity sensor. Figure 4 shows the frequency dependence vs. output voltage of the fast sensor. It is flat from dc to 60 GHz . The burnout power level is 500 mW for the fast sensor and 120 mW for the high-sensitivity sensor. The main characteristics of the sensors are listed in Table 1.

Fig. 2 Input power vs. output voltage



Input power=10 mW
Rise time (10% to 90%)=3.06 ms

Input power=10 mW
Fall time (90% to 10%)=3.06 ms

Fig. 3 Response characteristics of sensor

Fig. 4 Frequency characteristic of sensor

Table 1 Characteristic of sensor chip

Item	Type	
	FAST	HIGH-SENSITIVITY
Substrate	Sapphire	Glass
Input Resistance (Ω)	50±2	50±2
Output Resistance (Ω)	900	950
Sensitivity (mV/mW)	0.250	2.10
Burnout Power (mW)	500	120
Response Time (ms)		
t _r : 10% to 90%	3.06	41
t _r : 90% to 10%	3.06	39
Frequency Range (GHz)	dc-60	dc-40

SUMMARY

New thermopile-type thermal power sensors for the millimeter wave range (dc to 60 GHz) have been successfully developed to measure power quickly and accurately with high sensitivity.

REFERENCES

- 1) B. D. Inglis, "AC-DC Transfer Standards- Present Status and Future Directions", IEEE Trans. IM-34, pp. 285-289, 1985
- 2) H. Toda, K. Sasaki, Y. Nakagawa, and I. Sugiura, "A Matched-Load Type Thermoelectric Transducer for Power Measurement in the Millimeter Wave Region", IEEE Trans. IM-23, pp. 408-413, 1974
- 3) S. Kodato, "Si-Ge alloy film with very high electrical conductivity and thermoelectric power", J. Non Cryst. Solids, Vol. 78&79, pp. 893-896, 1985
- 4) S. Kodato, "SIMPLE HIGH- PERFORMANCE POWER SENSOR USING μ c-Si:Ge THIN FILM", Sensors and Actuators, Vol. 13, pp. 209-214, 1989